Quantum response of weakly chaotic systems
نویسندگان
چکیده
منابع مشابه
Quantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common random matrix theory predictions within a wide “weak quantum chaos” regime. This leads to a novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The Hamiltonian matrix of the driven system does not look like one from a Gaussian ensemble, but rather it is very sparse. This s...
متن کاملChaotic and Arnold stripes in weakly chaotic Hamiltonian systems.
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chao...
متن کاملGeneralized dynamical entropies in weakly chaotic systems
A large class of technically non-chaotic systems, involving scatterings of light particles by flat surfaces with sharp boundaries, is nonetheless characterized by complex random looking motion in phase space. For these systems one may define a generalized, Tsallis type dynamical entropy that increases linearly with time. It characterizes a maximal gain of information about the system that incre...
متن کاملA ”metric” Complexity for Weakly Chaotic Systems
We consider the number of Bowen sets which are necessary to cover a large measure subset of the phase space. This introduce some complexity indicator characterizing different kind of (weakly) chaotic dynamics. Since in many systems its value is given by a sort of local entropy, this indicator is quite simple to be calculated. We give some example of calculation in nontrivial systems (interval e...
متن کاملUniversal response of quantum systems with chaotic dynamics.
The prediction of the response of a closed system to external perturbations is one of the central problems in quantum mechanics, and in this respect, the local density of states (LDOS) provides an in-depth description of such a response. The LDOS is the distribution of the overlaps squared connecting the set of eigenfunctions with the perturbed one. Here, we show that in the case of closed syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPL (Europhysics Letters)
سال: 2010
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/92/20009